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Abstract—The deployment of increasingly complex deep learn-
ing models for inference in real world settings requires dealing
with the constrained computational capabilities of edge devices.
Splitting inference between edge and cloud has been proposed
to overcome these limitations, but entails significant communica-
tion latency. Newer edge accelerator devices can be distributed
throughout layers of the network, supporting fine-grained offload.
We propose a method for splitting a deep neural network (DNN)
across the edge, near-edge accelerator, and cloud to exploit the
combined computing capabilities of such devices while minimiz-
ing transmission bandwidth and, hence, energy. We formulate
an approach to find near-optimal two-split configurations to
optimize inference energy and latency. We thoroughly evaluate
our approach on the VGG16 and ResNet50 models using the
CIFAR-100 and ImageNet datasets to demonstrate that our
method can navigate the trade-off space effectively.

Index Terms—Deep learning inference, hardware acceleration,
edge computing.

I. INTRODUCTION

The Internet of Things (IoT) sees the wide proliferation
of connected devices producing streams of data that can
be used to improve human experience in many areas [1],
[2]. A key enabler of these applications is machine learn-
ing (ML) using deep neural networks (DNNs) to process
data and extract meaningful information. With the move to
highly connected “cognitive cities”, this information will be
processed to determine real-time responses [3]. A key compu-
tational challenge in this regard is balancing the constrained
computation capability of edge devices with these complex
workloads, while considering the communication and latency
cost of offloading to compute infrastructure such as the cloud.
Offloading computation from the edge to the cloud can incur
significant communication latency despite the improvement in
computation latency. Research has been conducted on split
computing for DNN inference, where DNN inference is split
across the edge and the cloud. This allows inference of
complex models to be completed with lower latency. Simple
DNNs can optimized to be computed locally at the edge within
the constraints of such hardware platforms.

With the advent of new generation edge hardware, such as
Jetson Orin Nano and Jetson AGX Orin, computing capacity
for DNN inference is significantly improved, and consequently
energy efficiency. These devices can be deployed at the edge
or near the edge to support offload from edge devices. They
differ from traditional “cloudlet” ideas in that they are not
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Fig. 1: Comparison of single-split execution of ResNet50
on the ImageNet dataset (green) and two-split configurations
(grey).

full-featured servers further up the network, but rather can be
deployed within a few hops of the edge, potentially integrated
into infrastructure such as mobile base-stations [4]. In such
a scenario, the traditional edge-cloud split can be extended
to multiple splits involving the edge, near-edge accelerator(s),
and the cloud. This can offer improved latency and energy
consumption, but the varying compute capabilities of these
devices must be suitably exploited [5]. The design space for
splitting DNNs across multiple resources in this manner is
large, and optimizing latency and energy is challenging.

In Figure 1 we show a comparison of energy and la-
tency (based on the detailed profiling used in this paper)
between edge execution (orange), cloud execution (blue), split
execution across the edge and cloud (green), and the full
design space for two splits (grey) across the edge, near-
edge accelerator, and cloud for ResNet50 inference on the
ImageNet dataset. These points do not consider accuracy
degradation resulting from compression of the communicated
data. Both latency and energy here include the communication
and computation. Hence, while the cloud computation latency
may be significantly faster than edge computation, the offload
latency makes the overall execution latency longer. We see
that a single split with various configurations has the potential
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to effectively reduce latency compared to individual edge and
cloud execution. However, the addition of a second split and
additional execution on the near-edge accelerator offers further
advantages in latency and energy while also resulting in a
much larger search space to explore. It is clear that a suitable
search strategy is required to find profitable DNN splits for
this scenario.

Naively splitting a DNN, without any architectural modi-
fication, can lead to high communication latency, since the
intermediate activations can be large [6]–[9]. This can be
addressed by inserting autoencoders at each split to finely con-
trol the data size (and hence communication latency) without
significant accuracy loss [10]–[12]. Existing work has only
explored single splits for edge-cloud execution with traditional
under-powered edge hardware. We explore two split strate-
gies exploiting modern hardware in a near-edge deployment,
showing how the significantly larger configuration space can
be tamed, while also running a large number of experiments
to verify our approach. Our framework identifies near-optimal
split strategies near the Pareto front under a given accuracy
loss threshold without requiring the training of DNN models
for all potential splits and autoencoder configurations. Our
contributions are:

• General formulation of split DNN execution considering
autoencoder overhead as well as latency and energy of
communication and computation.

• Proposal of a two-split partitioning strategy that identifies
splits near the Pareto front that satisfy an accuracy loss
threshold.

• Experimental validation against the full search space for
VGG16 and ResNet50 with the CIFAR-100 dataset and
demonstration of a Pareto front trade-off for ImageNet
on the same DNN models.

II. RELATED WORK

A variety of techniques have been proposed for splitting
DNN inference across devices. The first category of work
splits the DNN without modifying its architecture, thereby
preserving its accuracy. However, the cost of communication
can be high since intermediate layers in a DNN can have
large feature vectors. Kang et al. [6] establish a performance
prediction model based on offline profiling data for different
DNN layer types on the edge and cloud. At runtime, it is
used to predict the latency and energy of partitions through
exhaustive search. Li et al. [13] quantize data at the split
between edge and cloud, selecting suitable candidate split
positions through exhaustive search, considering the results
of offline performance profiling. Luger et al. [9] propose a
cost-aware splitting strategy which co-optimizes latency (using
frequency as a proxy) and financial cost. These approaches
only consider a single split.

Eshratifar et al. [7] formulate the execution of split DNNs
into a Directed acyclic graph (DAG), with vertices representing
the execution of layers on the edge or cloud and the length of
edges representing execution cost. The optimal split position
is obtained by finding the shortest path using integer linear

programming. Wang et al. [8] formulate the multi-split prob-
lem as a DAG across the edge and cloudlets, with the optimal
split positions decided by min-cost graph search. All the above
approaches, without architecture modification, severely limit
feasible splits due to the high bandwidth requirements at each
split, increasing communication latency.

The second category of work relies on modifications to the
DNN architecture to support enhanced splitting. In one class
of work, the DNN is split into a head and a tail. The head is
replaced by a smaller DNN with smaller output feature map re-
sulting in lower computation and communication requirements
when executed on the edge. Matsubara et al. [14] identify
natural split positions, where the output is much smaller than
the input. The head is used as a teacher model to train a small
student model by knowledge distillation (KD). An artificial
bottleneck is inserted in an early layer in the student model
to further decrease communication cost. In their follow up
work [15], they select the split position manually and design an
autoencoder. However, the results are highly model-dependent
and this approach only works for a single split.

Inserting an autoencoder at a split compresses intermediate
feature maps sent between devices. The encoder-decoder pair
can dramatically reduce the amount of data to be transmitted
between devices at the split. At runtime, the encoder layer is
executed on the device before the split and the the decoder
is executed on the device after the split. By retraining the
network with these autoencoders, it is possible to reduce
communication overhead with minimal impact on network
accuracy. Eshratifar et al. [12] place different configurations
of autoencoders at all possible split positions and profile
the latency and energy consumption of each combination,
selecting the optimal split through exhaustive search. Shao et
al. [11] insert autoencoders after each convolutional or pooling
layer and select the split position that achieves lower commu-
nication cost than the input images. Jankowski et al. [16] insert
autoencoders after pooling layers and prune the head model
to reduce computing redundancy. Yao et al. [17] propose
using asymmetric autoencoders to reduce communication cost.
These works demonstrate the feasibility of modified DNN
approaches to split inference, but do not scale to multiple splits
due to their exhaustive search approaches.

Another possible approach to determine split positions is
neural architecture search (NAS). A supernetwork including
the possible split encoders is trained and at runtime, the
sub-networks are evaluated and the optimal solution chosen
for deployment. Dong et al. [10] jointly search the optimal
DNN architectures and single optimal split position with an
autoencoder. Tian et al. [18] propose a NAS-based multi-split
method to co-optimize the structure of a deployed model and
offloading strategy. However, NAS cannot be applied to a pre-
trained DNNs and is highly time-consuming.

Our work extends previous work by applying modified au-
toencoder compression with fine-tuning to a more general two-
split formulation. We demonstrate that this offers enhanced
latency and energy compared to a single split for modern edge
devices.
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Fig. 2: System architecture comprising edge device, near-
edge accelerator, and cloud. DNN layers are split across these
devices with autoencoders inserted at each split to compress
communication.

III. PROPOSED METHOD

A. Overview

The system configuration we consider in our work com-
prises an edge device, a near-edge accelerator device, and
the cloud, as shown in Fig. 2. The near-edge accelerator is
deployed some level into the network, on the path to the
datacenter. For a wireless setup, this is assumed to be within
the wireless basestation, while for a wired setup, this could be
one or two hops into the wired network. We use the former
setup in this paper. The model can extend to a general number
of near-edge accelerator layers, but we present it here for
a single accelerator. Shared inference requires a DNN to be
split in two positions for this configuration, resulting in three
portions to be executed on the three levels of the network.
Input data is assumed to be generated at the edge device, e.g.
from an attached camera. The first portion of the DNN is
executed on the edge device with intermediate feature maps
sent over a wireless network to the near-edge accelerator where
the second portion of DNN inference is executed. The feature
maps output by this second portion are transmitted over a high
bandwidth network to the cloud where the remaining portion
of the DNN is executed for the final inference result.

Each split requires the addition of an autoencoder into the
DNN to control the size of the transmitted feature maps. The
encoder and decoder layers are executed on the source and
sink of each connection, respectively. Selection of autoencoder
parameters and positions affects DNN inference accuracy. The
aim of our work is to determine the optimal split positions and
autoencoder configurations for a given accuracy loss threshold
to provide a trade-off between latency and energy for multiple
splits.

B. Problem Formulation

We consider a system comprising an edge device connected
to a near-edge accelerator device, which is then connected to
the cloud. We wish to map a DNN comprising N + 1 layers,
and therefore N potential split positions. A split si ∈ {1..N}
can be implemented using an autoencoder ki ∈ K , where K
is the set of possible autoencoder configurations. In this setup
i ∈ {1, 2} since there are only two splits. The latency model
considers both computing latency and transmission latency.

1) Computation Latency Model: We profile the execution
of each of the N + 1 DNN layers (or portions where
splits are feasible), as well as different autoencoders, K, on
each of the different hardware devices: edge (E), near-edge
accelerator(N ), and cloud (C). From profiling, we calculate
the execution latency of the nth layer or portion on the edge,
near-edge, and cloud as Texecn,E , Texecn,N , and Texecn,C ,
respectively.

The autoencoder at each split is comprised of an encoder
and a decoder, executed on the source and sink device, respec-
tively. For a given autoencoder configuration k, we profile the
execution time of the encoders on the edge and accelerator as
Texecenck,E and Texecenck,N respectively (since the cloud is
never a source).

We also profile the execution time of the decoders on
the accelerator and cloud as Texecdeck,N and Texecdeck,C ,
respectively (since the edge is never a sink).

Therefore, the total execution latency of the first portion of
DNN layers and the first split encoder on the edge is:

TexecE =

s1−1∑
i=0

Texeci,E + Texecenck1,E (1)

where s1 is the chosen first split position and k1 is the chosen
autoencoder configuration for the first split.

The execution latency of the first split decoder, second
portion of DNN layers, and the second split encoder on the
near-edge accelerator is then:

TexecN = Texecdeck1,N +

s2−1∑
i=s1

Texeci,N + Texecenck2,N

(2)

where s2 is the chosen second split position and k2 is the
chosen autoencoder configuration for the second split.

Finally, the execution latency of the second split decoder
and remaining DNN layers on the cloud is:

TexecC = Texecdeck2,C +

N∑
i=s2

Texeci,C (3)

Hence, the total execution latency is:

Texec = TexecE + TexecN + TexecC (4)

2) Communication Latency Model: The output data size of
autoencoder ki is dki . The edge network connects the edge
device to the near-edge accelerator; this could be the nearest
wireless base station. The cloud network connects that near-
edge device to the cloud. The bandwidth of the edge network
and cloud network are rE and rC respectively. rttE and rttC
represent the round-trip time (RTT) of the edge network and
cloud network respectively. We model communication latency
as in [9] as follows:

TcommE =
dk1

rE
+ rttE/2 (5)

TcommC =
dk2

rC
+ rttC/2 (6)
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Then total communication latency is:

Tcomm = TcommE + TcommC (7)

Thus the total latency of the system is :

Ttotal = Texec + Tcomm (8)

3) Energy Consumption Model: We also profile the energy
consumption of the DNN layers and autoencoder configura-
tions on the edge, accelerator, and cloud devices.

The execution energy of nth layer or portion on the edge,
accelerator, and cloud are Eexecn,E , Eexecn,N , and Eexecn,C
respectively. The execution energy of encoders on the edge and
accelerator are Eexecenck,E and Eexecenck,N , respectively.
The execution energy of the decoders on accelerator and cloud
are Eexecdeck,N , and Eexecdeck,C respectively.

Hence, execution energy on the edge is:

EexecE =

s1−1∑
i=0

Eexeci,E + Eexecenck1,E , (9)

the execution energy on the near-edge accelerator is:

EexecN = Eexecdeck1,N +

s2−1∑
i=s1

Eexeci,N + Eexecenck2,N ,

(10)

and execution energy on the cloud is:

EexecC = Eexecdeck2,C +

N∑
i=s2

Eexeci,C . (11)

Hence, the total execution energy is:

Eexec = EexecE + EexecN + EexecC (12)

We define the communication power of the edge and cloud
networks, based on published work, as qE and qC , respectively
as in Table I. Hence, the energy consumed for communication
on the edge network and cloud networks is:

EcommE =
dk1

rE
∗ qE (13)

EcommC =
dk2

rC
∗ qC (14)

Hence, the total energy consumed for communication is:

Ecomm = EcommE + EcommC (15)

The total energy consumption:

Etotal = Eexec + Ecomm (16)

It is worth mentioning that for the reference edge and
cloud points, we execute the model entirely on the respective
devices with no autoencoders inserted, while considering the
communication latency as required. We assume the cloud as
the sink for the DNN output though this can be modified in
the model.

Profile latency&energy
for individual segments

Fine-tune each split for 
autoencoder k

Single split-accuracy loss LUT(s,k)

Calculate two-split 
accuracy proxy 

Pareto front search

CandidateSplits

Fine-tune selected models

Deployable split models

Identify candidate splits s

ProxyAccLoss((s1,k1),(s2,k2))

1

2b 2a

3

6

7

Apply accuracy
threshold thAcc

4Evaluate latency
and energy of configuration

5

Latency and energy 
of each segment

SearchSpace

Pruned 
configurations

Fig. 3: The design flow for deploying a split DNN model using
our proposed method.

C. DNN Splitting Strategy

We established in Figure 1 that inserting two splits and
exploiting the cloud and near-edge accelerator could offer
reduced latency and energy compared to edge-only, cloud-
only, or edge-cloud execution. However, with N possible split
positions and K possible autoencoder configurations per split,
the space of possible configurations becomes 1

2N(N − 1)K2.
Each of these configurations results in a potential accuracy
degradation, even after fine-tuning, which may or may not
satisfy application requirements. This can only be determined
after fine-tuning, which can be time consuming. Hence, we
require a more efficient method to identify suitable candidate
configurations for the trade-off, which can then be fine-tuned.

Our proposed method is shown in Fig. 3. First we determine
feasible split positions in the DNN ( 1 ). There will generally
be less than N feasible splits in an N + 1-layer DNN as
these should be layers which naturally have reduced feature
size communicated to following layers. For example VGG16
splits are feasible after a convolutional layer or convolutional-
pooling pair. Additionally for ResNet50, they can be inserted
after a bottleneck block [19]. Hence for VGG16, which has
16 layers, we have N = 12 candidate split positions. For
ResNet50, which has 50 layers, we have N = 17 candidate
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Algorithm 1 Two-split candidate determination algorithm

Input: potential split positions {1..N}, autoencoder set
K, single split-accuracy loss LUT Loss(s, k), maximum
accuracy loss threshold thAcc , latency and energy model
Eval
Output: candidate set of splits for fine-tuning
CandidateSplits

1: Initialize: SearchSpace = ∅
2: for each (s1, k1) ∈ {{1..N},K} do
3: for each (s2, k2) ∈ {{s1 + 1..N},K} do
4: first split loss l1 ← Loss(s1, k1)
5: second split loss l2 ← Loss(s2, k2)
6: ProxyAccLoss ← max(l1, l2) +

l1+l2
2

7: if ProxyAccLoss ≤ thAcc then
8: Ttotal,Etotal ← Eval((s1, k1), (s2, k2))
9: add ((s1, k1), (s2, k2),Ttotal,Etotal) to

SearchSpace
10: end if
11: end for
12: end for
13: CandidateSplits ← ParetoFront(SearchSpace)
14: return CandidateSplits

split positions.
At each split, we insert an autoencoder, configured as

in [11]. This comprises an encoder-decoder pair. The encoder
is a convolutional layer, a batch-norm layer, and a Sigmoid
function, while the decoder is a convolutional layer, a batch-
norm layer, and a ReLU function. The number of kernels
applied in the convolutional layers in the autoencoder is
configurable, allowing control over the size of features emitted
by the encoder (affecting communication latency and energy).
This results in an accuracy loss, which is mitigated to some
extent by fine-tuning after inserting the split. Clearly, fine-
tuning a large number of split DNN models for all potential
split combinations and autoencoder configurations is infeasi-
ble.

Hence, we start by inserting different configurations of a
single autoencoder at each possible single split position, then
fine-tune these configurations to form a look up table (LUT)
of single split-accuracy loss, Loss(s, k) ( 2a ). Each of these
model segments, comprising a minimal layer section, along
with its autoencoder pair (preceeding and following) is profiled
for latency and energy ( 2b ).

The user specifies their acceptable accuracy loss threshold,
thAcc . The predicted accuracy loss for each possible com-
bination of multiple splits and autoencoder configurations is
computed as per Algorithm 1 ( 3 ) then compared to the
threshold and points that do not meet the threshold are filtered
out ( 4 ). The pruned points are then evaluated using our model
to determine latency and energy ( 5 ). A pareto front search
( 6 ) among these points is then used to identify the most
promising trade-off points in terms of latency and energy,
which can then be fine-tuned ( 7 ) for deployment. We evaluate

TABLE I: Communication model parameters.

Network Capacity (Gbps) Power (W) RTT (ms)
Edge (5G) 0.13 [22] 2.5 [22] 10 [23]

Cloud 10 [24] 5.5 [24] 60 [4]

TABLE II: Training settings for CIFAR-100 dataset

Model Stage Epochs (lr*0.1) @ epoch

VGG16
first 120 80

second 160 40,100,140

ResNet50
first 90 60

second 80 40

the effectiveness of our approach in Section IV.
Hence, for a new DNN, we are only required to initially

fine-tune NK model configurations ( 2a ) after which feasible
trade-off points close to the Pareto front are found to be further
fine-tuned ( 7 ) as needed. These fine-tuned DNN models can
then be deployed.

IV. EVALUATION

To verify the effectiveness of our DNN splitting strategy,
we evaluate it on VGG16 [20] and ResNet50 [19] pretrained
DNN models on the CIFAR-100 dataset [21]. We fine-tune all
possible combinations of splits and autoencoder configurations
for the full search space then compare the points chosen by our
method in terms of closeness to the true Pareto front. We then
show how our method provides multiple good trade-off points
for the same DNNs applied to ImageNet (which is much more
time consuming to train).

A. Experimental Setting

All DNN models are trained and fine-tuned using Nvidia
A100 SXM and V100 SXM2 GPUs using PyTorch version
1.10.2. The total GPU hours for training all configurations of
VGG16 and ResNet50 for CIFAR-100 in this paper is over
30,000. The base accuracy of VGG16 and ResNet50 on the
CIFAR-100 dataset is 74.70% and 78.75%, respectively. To
fine-tune the split DNN models with the autoencoders, we use
a two stage strategy as in [11], i.e. first train the autoencoders
while fixing other DNN model parameters, then fine-tune
the whole DNN model including autoencoders. We use the
SGD optimizer, with initial learning rate 0.01, momentum 0.9,
and weight decay 5e-4 for both first and second stages of
training [25]. Other settings are shown in Table II.

We consider a setting where the edge device produces 30
frames per second of video to be processed by the DNN. The
edge device is an Nvidia Jetson Orin Nano 8GB. The near-
edge accelerator is an Nvidia Jetson AGX Orin 64GB. The
cloud device is a datacenter class Nvidia A100 80GB SXM.
We profile the latency and energy of each layer, encoder, and
decoder on each of these devices. For CIFAR-100, we use a
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TABLE III: Execution latency of base models.

Latency (ms) Energy (mJ)

Jetson Orin
Nano

Jetson AGX
Orin

A100
Raspberry

Pi 4
Jetson Orin

Nano
Jetson AGX

Orin
A100

Raspberry
Pi 4

VGG16
CIFAR-100

18.59 14.23 0.4 4591.7 63.1 85.9 324.1 22958.7
ResNet50 107.2 67.3 3.2 13830.0 389.8 464.7 1313.7 69164.7

VGG16
ImageNet

1015.9 520.3 18.5 — 3645.5 3816.1 7235.3 —
ResNet50 828.3 221.4 10.7 — 2810.3 1528.0 4266.9 —

batch size of 32, 128, 512 on the edge, near-edge accelerator,
and cloud, respectively. Table III shows the execution latency
and energy measured for the execution of the full base
models on the different devices used in our experiments. We
also profiled the Raspberry Pi 4, which showed poor energy
efficiency due to the long execution times resulting from a
lack of hardware acceleration.

For the communication model, we model the capacity and
transmission power and RTT of the edge network (based on
5G) and the cloud network (based on high bandwidth fiber)
as in Table I.

B. Accuracy Proxy Evaluation

A key requirement for such a large search space is to
determine candidate points that meet a required accuracy loss
threshold thAcc . That is, a configuration of split positions
and autoencoder configurations that achieves an accuracy
within this threshold of the original DNN, while offering
better latency and energy consumption. We propose a proxy
for the combined accuracy loss for two splits, as shown in
Algorithm 1. Having trained all possible configurations for
our initial analysis, we can determine how well this proxy
performs. Table IV shows how our proxy performs against the
proportion of prunable points based on the real accuracy for
three different accuracy loss thresholds, thAcc . True positives
(TP) are split strategies where the true accuracy loss exceeds
thAcc and which are successfully pruned. True negatives (TN)
are strategies successfully retained as they have real accuracy
loss less than thAcc . We would like to maximise these two.
False negatives (FN) are strategies where the real accuracy
loss exceeds thAcc but which are wrongly kept. These just
increase the number of points to evaluate. False positives (FP)
are strategies that are erroneously pruned, which, in reality,
exhibit accuracy losses less than thAcc . We would like to
minimise these since they could be promising solutions. We
see that this proxy offers a good approximation.

C. Split Position Search

In Figure 4 and 5 we show the resulting configurations
identified by our search. Each figure shows three plots for
different accuracy loss thresholds that might be requested by
the user. Full execution on the edge and cloud are shown
in orange and blue, respectively. The axes are normalised to
execution on the edge. The grey points show the full set of

possible configurations, each of which we have fine-tuned to
determine the final accuracy. This is just for the purposes of
evaluating our approach. Points that meet thAcc are included
in the plot. The green points represent the true Pareto front
of points meeting the required accuracy, and could only be
determined through exhaustive search. Our method finds the
points shown in red, which are close to the green points.
Some of these red points when fine-tuned do not in fact
meet thAcc (shown with a circle), while most do (shown with
a star). For both DNN models, we see that our approach
identifies candidate points that are close to the Pareto front,
offering a trade-off between latency and energy, while meeting
thAcc . In many cases, these are the exact same configurations
determined by full search. Hence, our approach significantly
narrows down the number of configurations that needs to be
trained compared to the brute force approach. As ResNet50 is
around 4× as computationally demanding as VGG16 in our
profiling experience, we see that the computational capability
of the devices offers a smoother Pareto front of points between
edge and cloud for that model.

For CIFAR-100, we were able to exhaustively train all
configurations in order to determine the final accuracies to
validate our approach. With a larger, more complex dataset
like ImageNet [26], this was not feasible, even with a large
number of GPUs. The base accuracy of VGG16 and ResNet50
for the ImageNet dataset is 73.36% and 80.35%, respectively.
To fine-tune the ImageNet dataset, we train 20 epochs for both
the first and second stages with a batch size of 64 on two
Nvidia A100s. For both stages, the learning rate is scaled by
0.1 after 10 epochs. The learning rates for the first and second
stages of VGG16 are 0.1 and 0.01, while for ResNet50, they
are 0.01 and 0.001, respectively. We use the SGD optimizer
with momentum, and weight decay 0.9 and 1e-4, respectively.
Fine-tuning a configuration on ImageNet takes 20 times as
long as for CIFAR-100, hence the need for a more efficient
search method to identify suitable configurations. For profiling
of ImageNet, we use a batch size of 1, 32, 128 on the edge,
near-edge accelerator, and cloud, respectively.

In Figure 6, we show the candidate points identified by
our approach for thAcc = 0.03 for the ImageNet dataset for
both VGG16 and ResNet50. The plot shows that our method
successfully identifies candidate points that offer a trade-off
between latency and accuracy, while significantly improving
on cloud or edge execution, and without the need for ex-
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TABLE IV: Evaluation of two-split accuracy proxy on CIFAR-100. Note this is the accuracy of the proxy prediction in pruning
search space points, not the resulting model accuracy.

thAcc = 0.01 thAcc = 0.02 thAcc = 0.03

Model Filter Pruned Kept Pruned Kept Pruned Kept

TP FP TP FP TP FP TP FP TP FP TP FP

VGG16
Real 56.36% 43.64% 35.43% 64.57% 22.11% 77.89%
Proxy 43.37% 7.05% 36.59% 12.99% 16.21% 2.97% 61.60% 19.22% 11.59% 1.90% 75.99% 10.52%

ResNet50
Real 38.58% 61.42% 19.02% 80.98% 11.30% 88.70%
Proxy 20.74% 1.30% 60.12% 17.84% 13.15% 0.84% 80.13% 5.88% 9.49% 1.68% 87.02% 1.81%
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Fig. 4: Experimental results for VGG16 with the CIFAR-100 dataset.

0.4 0.6 0.8 1.0 1.2
normalized latency

1

2

3

4

no
rm

al
ize

d 
en

er
gy

0.4 0.6 0.8 1.0 1.2
normalized latency

0.4 0.6 0.8 1.0 1.2
normalized latency

Edge
Cloud
True Pareto Front
Our Method (success)
Our Method (fail)
Validation

thAcc=0.01 thAcc=0.02 thAcc=0.03

Fig. 5: Experimental results for ResNet50 with the CIFAR-100 dataset.

haustively evaluating multi-split configuration accuracies. The
purple validation points show that the model is accurate while
over-predicting energy in most cases for ResNet50. Our search
approach consumes between 0.3 and 2.6 seconds to execute
and identify the candidate points to be fine-tuned.

We also validated the energy and latency values for the
Pareto-optimal split schemes by running those segments of
the model on the different devices, with the resulting points
shown in purple. These show good correspondence with the
predicted latency maintaining monotonicity and energy also
tracking reasonably. The difference between the modelled
latency and energy and that measured in the final deployment

was ±1% and ±6%, respectively, both networks on the
ImageNet dataset, and for ResNet50 on CIFAR-100. Since
VGG16 on CIFAR-100 has much lower computational cost,
errors were higher for that.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach for split
inference of DNNs across the edge, a near-edge accelerator,
and the cloud, showing that this can offer a better trade-
off of latency against energy while still meeting accuracy
requirements. Our approach relies on some initial profiling,
followed by a pruned search that identifies suitable positions
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Fig. 6: Resulting splits on ImageNet with thAcc = 0.03

for two autoencoder splits to be inserted into the DNN. The
result is a much quicker determination of promising points
that we show are close the the exhaustive Pareto front. We
confirmed this with exhaustive experiments on VGG16 and
ResNet50 on the CIFAR-100 dataset. We then showed that
for the more complex ImageNet configurations of VGG16 and
ResNet50, a suitable set of trade-off points could be arrived at.
We finally confirmed that the split execution latency models
match those from real experiments within a 1% margin.

We are now investigating scaling this method to an arbitrary
number of splits, which requires an enhanced accuracy proxy
to prune the search space further. We are also interested in ap-
plying this approach to more complex DNN models including
Transformers. We believe new embedded ML accelerators will
enable a much wider range of deployment scenarios requiring
improved approaches for mapping DNN workloads to them
and an increasing reliance on distributed inference.
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